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RECENT DEVELOPMENTS IN THE UNDERSTANDING OF PION-NUCLEUS SCATTERING

Mikkel B. Johnson .

los Alamos National Laboratory
lcs Alamos, New Mexico 87545

ABSTRACT

A development of the theory of pioan-nucleus scat-
tering 4is given in a field theoretical framework.
The theory is designed to describe pion elastic
scattering and single- and double-charge exchange
to isobaric analog states. An analysis of recent
data at low and resonance energies is wmade.
St-ong modifications to the simple picture of the
scattering as a succession of free pion-nucleon
interactions are required in order to understand
the data. The extent to which the experiment is
understood in terms of wmicroscopic theory 1is
indicated.

The basic problem in the theory of hadron-nucleus scattering as
vieved in nuclesr physics 1is to arrive at a formulation which
addresces the fundaazental issues, which permits quantitative answers
to certsin practical questions, and which is readily solvable. The
last requirement makes the task very difficult. In the specific case
of pion physics at medium energies, nuclear physice is challenged to
go beyond the treditional framework and to solve the many-body problem
of a quantum field interacting with a collection of nucleon sourcas.
The final result must describe the interplay among the nuclear, pion,
and A,, dynamics. The coupling among these ssctors of the problem can
becomé™ fairly 4intricate, but the theory must seriously address all
three if it is to be able to separate the fundamental issues from
uncertainties in nuclear structure, which one would like to probe as a
practical application. PFor example, the pion has a special sensitivi-
ty to neutron densities, and one hopes that this sensitivity can be
exploited to study separately and in detail the neutron component of
ground and excited nuclaar statas.

In these lectures 1 will discuss a theory of slastic scattering
and single~- #nd double-charge exchange to isobaric analog states which
addresses thesea issues. The lectures will emphasize the pedagogical
developuent and will utilize time-dependent perturbstion wmethods to
find & esuitable thaory of the optical potential based on a field
theoretical description. In order to bring together elastic, single-
and double-charge uxchange, isoepin invariance will be incorporated at
a basic level of the theory. Interpretation of recent LAMPF data in
this theoretica. framework will be made.



I. Basic Theory

Traditional multiple scattering theotiesll are not well
justiried for describing pion-nucleus scattering. Thesc theories as-
sume that the dynamics can be adequately described by potentials and
that the number of projectile particles is conserved. This is clearly
not the case in pion-nucleus scattering, because pion number may in-
crease or decrease by one unit at any time: during intermediate time
intervals any number of pions may be present. Thus, one would like to
build up the final result in terms of the absorption and emission anm-
piitudes of a meson from a nucleon (and i{ts first exciced state, A

s
with one objective being to learn new details of how this coupiing
occurs.

In order to be able to describe scattering of a projectile under
these circumstances one must use more powerful techniques. The apprg-
priate tool from many-body theory 4is the Green’s function )
Ga.a(t' - t), which gives the amplitude to remove 2 pion in state a’
from the ground state of the system at time t’ when it is inserted at
time t in state a. The formal definition of this Green’s function is

¢ - -1 T ’ +
Gyrglt’ = t) = 17°<0| T[a, . (t")a (t)] 10> (1)

where |0> is the interacting ground state, a:(c) is the pion creation
operator in the Heisenberg representation and T is the time-ordering
operator. The advantage of the Green’s function is that it lends it~
self to diagrammatic analysis, waich means that the "bookkeeping" for
its numerical evaluation is especially simple. The Green’s function

applies to the case of multiple scattering in bnth potectial theory
and field theory.

I would like to give now an intuitive derivation of the equation
of motion for the »ion wave function ¢(x,t). The derivation is based
on the existence of the Green’s function but does not require a
specific dynamical model. I wish to make the following assumptions:

(a) we know the pior wave function for large negative times
tmwt. + =
0 »

1(kexa-Ety)
Vo(X) = ¥(x,ty) = e (X+207Et0

(b) we know the amplitude S(x’,x) for propagation of the pion
from x = (E't) to x’ without exuiting the medium;

(c) we know the anplitude F(x',x) for the propagation of the
excited medium.



The amplitude y(x’) is related to y,(x) by the principle of su-
perposition, i.e., ¢(x’) 1is obtained from Vo (x) by summing over &ll
interfering histories for the evolution of the system,

v(x') = j d3x0 2 Ai(f't‘; Eoto)u’o(’joto) ’ ’ (3)
{ .

whe re the A, describe a history in which the pion interacts with the
system 1 times through F (see Fig. l). Because we know the amplitudes
for propagation of the pion without exciting the medium and for
propagation of the excited medium, we have

A0 - S(X',X) ’ (4)
- [/ d%x: daxl S(x",x]) F(x{,x;) S(x;,x;) , and (5)
Ay = [ooof a%x] Ldbx, S(x%,x]) F(x{,xp) S(x),%3)

F(Xé,XZ) S(XZ,Xo) . (6)

1f we call the sum of all these amplitudes Gxixo(t’ - to),

GE‘.EO(t’ - to) - Z Ai(x'.xO) » (7)

which is appropriate by definition of the Green’s function, then it is
possible to evaluate G by solving the integral equation,

A,

@l /" @C?

to

Fig. 1. TIllustrating alternative histories A, by vwhich the pion
(dashed line) may propagate frum ty to t. Alternative smplitudes are
summed coherently to get the complete amplitude for finding the meson
at (x’,t").



le’xo(t' - to) - S(x,,xO)
+ ff daxidaxls(x"xi)F(xi’xl)Gxi.xo(tl - to) . (8)

That Eq. {8) 1is equivalent to the sum of A, is most easily seen by

repeatedly inserting the left~hand side of Eq. (8) into the right-hand
side.

Now, to find the equation of motion for y(x,t) we make use of
the fact that the wave equation for a free pion i1is the Klein-Gerdon
equation, so that

Lz =92 4 4 8(x",%) = (D+ uDS(x7,x) = ~16(x" = X)64c” = £) . (9)
3t

Applying O + uz to Eq. (8) and using Eqs. (3), (7), and (9) we find

[O+ w2 -1 [ d%%; F(x’,x))] wlx),ty) =0 for t” > tgm == . (10)

Equation (10) 4s the desired result. By taking the Fourier
transform we find that the wave function ww(x) for a pion of enmergy w
satisfies the familiar Klein-Gordon scattering equation

(<92 + 42 4+ d3x'<§|U(w)|5'>] V- 7) = wzww(X) , (11)

where the optical potential U is just the Fourier transform of the am-
plitude of the pion-excited medium,

<K U(w) 1XD> = —1£:d(t' - t)eiw(t"t)F(g’t'; xt) . (12)

We have used the result that F can depend only on the time difference
t’ - t due to invariance under time translation. The elastic-scatter-
ing amplitude is obtained from ¢y in the usual way. Understanding the
meaning of y(x,t) 1in terms of the pictures in Fig. 1 is usefuv! for
determining how to use Y(x,c¢) in the calculation of other observables
such as inelastic scattering.

One easlily sees by referring to Fig. 1 that the theory which we
have constructed dces not preserve the number of pions across s given
time interval. Thus, physics embodied in Eq. (11) goes beyond that of
traditional multiple~scattering potential theories. Examples  of
formulations which begin with potentials .and use one of the
traditional multiple-scattering theories are given 1in Ref, 3. The
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equation of mocion in these theories 1s often the relativistic
Schroedinger equation. The isobar-hole model of Ref. 4 makes use of a
generalization of Schroedinger dynamics to treat the coupling between
the pion and isobar-hole excitations. Not only is the physical basis
of the relativistic Schroedinger equation different from that of the

Klein-Gordon equation, but in practice they can lead to different
results.

The wain problem i1is now to find a theory of the amplitude
F(x’,x) for the propagation of the excited medium. We must introduce
a dynamical model for this purpose. 1In this lecture I want to pick a
simple model for the meson-nucleon coupling and for the nucl:a.
dynamics, but 1 want to insist that the model address the new aspect,
that pions are emitted and absorbed as single quanta. In vwarticular,
I want to treat the nucleons of the nucleus as fixed sources of the
meson field. The static theory is believed to approuximately describe
a theory including nucleon recoil under suitable conditions,6] and
therefore, t'.e static theory can be useful for making estimates. The
extent to which these conditions are satisfied is an important issue
in practice, so that the static assumption will have to be relaxed
later to make quantitative comparisons to experimental data. The main
point is that the extension to include nucleon recoil is not one of a
conceptual nature and that the structure of the theory is almost
unchanged. The extension does add much aggravation to the practical
implementation, nowever.

With these caveats clearly i1in mind, I will now describe a

Hamiltonian H which has many of the desired properties. We shall take
K ‘o0 have the three pileces,

He= Hyp + Hyy + H . (13)
The baryon sector 1s described by
B + .

where bt 1g a creation operator for a nucleon or a b4y of mass my at
position ry. We envision the & a8 an independent degree of freedom
as it would be in the guark model. We have included a counter term
uy which may be used for purposes of renormalization, The meson
negtor is described similarly by

Hoy = ) atakwk , (15)
k

where w H (k2 + n 2)1/2 and nt creates a meson of quantum numbers
"k'', which will stand for momentum, isospin,.... In these lectures,



we will allow the meson to be a pion or a p meson. The coupling among
these degrees of freedom is specified by

B = ] [sppy vIi() + B.CL) (16)
ijn

where the interactions Vji(k) may be described diagrammatically as in
Fig. 2. Specific expressions for m and p couplings to nucleons are

VEN - (fﬂNN/mﬂ)g ckrea vaN(k) and an

VAN @ (£ /m) £ v g x kT e g voN() (18)

where ¢ and t are Paulil matrices in spin and isospin space, o 1s a
veLtor representing the isospin quantum number of the meson, € is the
polarization vector of the meson and the v(k) are form factors. The
standard value for f% /b4 }s 0.08, and the p-meson coupling will be
taken as the "strong" va ue,7

2 2 2,2
prN/fﬂNN . m“/mp -2 . (19)

Similarly, the n and p coupling to the isobar A33 are

Vﬁb = (fopp/mp) L © kO av,,(k) and (20)
SRECHWLIRE S S X R AV O I (21)

where I and O are the b33 spin and isospin operators,

22|A33> - —lzz |A33> ’

N A :§¢¢N~
M
"
-
A 5 N

fa) (b) (c)

Fig. 2. Examples of meson-baryon co plings employed in these lectures.



and similarly for isospin. The value for the coupling of the pion to

the 834 can be related to fonn by SU(2) x SU(2) quark model ar-
guments8 which give

16
Eppp/En)? = 35 - e

Similarly, the coupling of the p meson to th. s leads to the relation-
ship

Finally, transitions between nuclzons and 444 may be described by

N .
VnA = (£, Np/my) 8

NA
vp = (prA/mp) -~

Lo x
.
3
1 32

T - vaA(k) and (24)
x k

™

.
w»n
)

g V(O (25)

-~

where SU(2) x SU(2) symmetry again relate the pion coupling to that of
nucleons

f%NA/ngN = 72/25 and (26)

fona/fann = Sana/Eann (27)

In Eqs. (24) and (?5) S and Eg?re transition spin and isospin opera-
tors, respectively, defined by

3 1 3 1 ~%
&M . - = Cl= M: = m; ek, 28
; ME - kg w %k (7 ¥ g m m)em) - K (28)

where the unit vector 3*(mk) is defined through the relation
K+ e*(my) = /@73 Yin(k) - (29)

A similar definition holds for the transition isospin operator. The
vectors a 4in Egqs. (17) through (25) have the same representation as
é(m,) of Eq. (29), i.e., a 1" 1s represented by é(m = +1) = G +. The
§ and T operators are related to projection operators, e.g.,

- e 1
T+‘QT'B-GGB--3—

T a T e é (30)



projects onto total isospin 3/2 of the pion-nucleon system, and simi-
larly

3+.’.- .'—10'.
& RSk kek -zg- k' g- k -6y

projects onto total angular momentum 3/2 .

(me of the exciting possibilities of pion—nucleTs scattering 1is
that models of baryonm structure in juark models!0 might be tested
through a sufficiently careful implemen-ation of the theory. Under~
standing of the one-pion exchange potential and meson exchange
currents in nuclear physics h?s led to constraints on the size of the
quark bag of the nucleon.! One might hope that similar statements
about the size of the A,, bag [and other details of H’ of Eq. (16))
might arise from appfgcations of pion-scattering theory, because of
the strong coupling between the pion and the LELY

For example, in the bag model as applied to baryons, the three
quarks fill a region of space of radius R, which is in turn determined
by minimizing an energy functional, whose main contributions arise
from (1) quark kinetic_ emergy, which varies as 1/R, and (2) the bag
energy which varies as RS and is interpreted physically as the source
gr ssure responsible for confinement. In the Stony Brook ver-
siun of the bag model there is an additional attractive term due to
the pilon coupling to the bag surface. The radius of the bag is
usually taken to be the classical value, which is the location of the
minimum of the energy functional. The general shape of the energy
functional for the Stony Brook bag is shown in Fig. 3, and the minimum
occurs for the nucleon at a radius of approximately 0.3 fm.

The coupling of the pion to the nucleon is determined by the
principle of the conservation of axial vector current: inside the bag
this current 1is carried by the quarks, and outside it is carried by
the pion field. 1In order that the current be conserved, these two
contributions must be continuous across the bag surface. In this
fashion, one determines the pion-nucleon coupling constant as well as
the dependence of the coupling on the pion momentum k, which specifies

the form factor. For a bag of fixed radius R the form factor turns
out to be

33; (kR)

vik) = o (32)

where jl(kR) is a spherical Bessel function.

In a number of ways these bag models are too simple for the pur-
poses of plon-nucleus physics. For one thing, the nucleon and &4,
have different sizes in bag models. Since there is no overlap of the
surfaces, and since the pion couples only at the surface, these
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Fig. 3. Bag energy functional for a nucleon in the Stony Brook "lit-
tle bag."

models, strictly interpreted, do not allow transitions between
nucleons and A3,! For another thing the sharp surface of the bag
introduces spur£ous high-momentum components in the form factor, which
are undesirable due to the fact that pion couplings tend to emphasize
high momenta.

As solutions to the theory become more sophisticated, these dif-
ficulties will disappear. I would now like Lo briefly describe one
way that this would occur. An obvious omission from the theory as
described is quantum fluctuations of the surface around the classical
radius. These fluctuations can be estimated under the assumption that
the quarks move much more rapidly than the surface. 1In this case, the
energy functional i4in Fig. 3 would play the role of the potential
energy in a Schroedinger equation for the wave function y(R) of the
nuclear surface [Iw(R)l2 gives the probability that the bag surface is
located at R},

02
[ZX + UR)JW(R) = Ey(R) (33)
2

>

which could be solved provided M*, the effective mass of the surface
zero-point motion, is known. In Ref. 13 this effective mass was
estimated to be

M* % 0.5 M (34)



under the assumption that only the quarks contribute to the
vibrational energy and that the vibrational motion is homologous.

One of the consequences of this wmodel 1s that Zl.e root mean
square (rms) radius of the bag surface increases from 0.3 fm to about
0.7 fm. , Estimates of the effect of a relativistic treatmenti of the
surfa-el4] give a smaller rms radius of about 0.5 fm. One concluder
from the relativistic model of surface zero-point motion that the fo..
factor can be described by a cutoff mass A such that

1
v(k) = -~ (35)
k2/A2 + 1

with A = J.4 GeV/c for the NN coupling and A = 1.1 GeV/c for the N
coupling. Valyes this large are consistent with dispersion theory
calculations.} Phenomenclogical treatments of pion scattering 1in
field the%reg}cal frameworks tend to give cutoffs of 763 to
980 MeV/c.14»1 These smaller values presumably reflect the fact
that nucleon recoil, which 1is normally omitted in the thenretical
calculations, introduces additional cutoff factors. Recoil effects
can be estimated by looking at the momentum dependence of the nucleon
spinors and relativistic phase space. We estimate that an "intrinsic"
cutoff of A = 1.4 GeV/c gets reduced by the recoil to A = 1.03 GeV/c,
which is not so different from the larger phenomenological value.

The situation discussed here contrasts sharply with the more
traditional ways of describing pion-nucleon scathering in terms of
potentials. In. these theories the cutoffs are much smaller,
A = 200 MeV/c.1 The reason for this is a combination of effects,
the most severe of which 1s an intrinsic confusion of poteatial models
between the energy dependence of Yhe nucleon pole and the momentum de-
pendence of the form factor,16,18 Since the geometrical size of the
nucleus as well as higher order terms of the optical potential are
influenced by the range of the form factor, it is important at a quan-
titative level to go back to fundamental principles and describe the

scattering in terms of the pion—nucleon couplings of Fig. 2, ac we are
doing.

Having chosen and discussed in detail a model for the underlyiig
dynamics, let us now consider how to build up plon-nucleus scattering
from it. Recall that we have chosen to assume that the nucleons are
fixed at positions r,,...,r, as the pilon multiply scatters through the
nucleus. Finally, of course, it is nccessary to average the nucleon
positions over the wave function of the nucleus in order to calculate
a cross section.

We will describe the Green’s function for this model.f: The
rvles of time-dependent perturbation theory for the calcnlation of G
will not be derived. The specific form in which I state the rules may
not be known to everybody, but the 1ideas for constructing time-



dependent amplitudsi should be familiar from previous course work in
quantum mechanics.

We begin by describing the way to calculate the Green’s function
G p (t -t; rl,rz,...,rA) for the pion, assuming that the nucleon
sources are at fixed positions LyseeerTye Examples of diagrams for

GE.&(t' = t; LyeeeXy) (36)

are given in Fig. 4. The amplitude G is evaluated by summing all
allowed diagrams, each of which iz msssociated with a numerical value
by definite rules to be described below. The allowed diagrams con-ist
of A nucleon lines labeled by the spatial coordinates of the nucleons.
Trese 1lines are directed by an arrow which points wupward (the
direction of incrnasing time). The diggrams each have two labeled
times t’. und t at which a directed pion line o° quantum numbers k’
.erminates and a pion line of quantum numbers k originates, respect-
{vely. These pion 1lines may connect to ~nuc1eons, as shown in
Fig. 4(b) or may comnuct the times t’ and t, as shown 1in Fig. 4(a).

o

Fig. 4. Examples of diagrams contributing to the Green’s function 1in
Eq. (36). The labels for parts of the diagram are occasiounally omi‘-
ted to slmplify the figure.



Otherwise, there may be any number of directed pion lines counrecting
the nucleon lines; pions may propagate either forward or backward in
time. Each vertex at which a piop counnects to a nucleon is assigned a
distinct time label. Intermediate pion lines are lsbeled by quantum
rumbers k’“, and nucleon line segments are labeled by i to distinguish

between nucleons and A33 and to specify the spin and 4isospin quantum
numbers. :

Numerical values are <2ssociated with the diagrams as follouws:
(1) Each vertex at which a pion attaches to a nucleon is assigned a
value given as a matrix element of the operators in Eqs. (17), (18),
(20), (21i), (24), and (25) . (2) Meson line segments pointing upwa:rd
are assigned the value

e-ikat
_—— 0(at) (37)
2wy

and mesor lines pointing downward
-iw, (-4t
e wk( )

6(-at) , (38)
2wk

wvhere At 18 counted in the direcrion of the arrow. (3) Intermediate
nucleon line segments are assigned & value

@(At)e-i<c>6t , (39)

vhere <c¢> is .rn average: excitation energylo] and intermcdiate 434

o(at)e TMadt (40)

(4) Sum over all intermediate labels. This sum includes the discrete
quaantupr number: of the pions, nucleons, and A33 as well ag the
intermediate pi momenta

a3
(21!)3

and the intermediate times

-1 [ dr . (41)

Two useful idantities are



~iwy (t’=t) , ® dw e-iw(t'—t)
e(t! - t)=141| _— —
¢ ( ) Lu 21 w - Wy 4+ in and (42)

fwp (¢ = t) -1iw, (t-t*)
e e
(! = t) + —— B (t - t)
Zwk Zwk
® -lw(c’~t)
- [ de ; . (43)
T 2. wi + in

We have not said much about the term u +y in Eq. (14). One
should not forget to 1include it in evaluating the diagrams. It is
needed because wany of the interactions in higher order will have the
effect of changiug the nucleon and delta energies away from the values
<e> and m,, which we have assumed them to have. Thus u,, should be
thought of as having whatever value is necessary to maintain these
singie~particle euergies. It 1is analogous to the single-particle
potential 1in low enezgy nuclear physics, which is usually added and
subtracted from the many-body Hamiltonian before doing perturbation
theory. The '"added" piece establishes a set of busis states and the
"subtracted" piece then cancels some important higher order terms and
enables one to avoid double counting with the mesons in the nuclear

force. The term u,,, here plays the role of the "subtracted" piece in
conventional many—%oéy physics.

By evaluating the diagrams in Fig. 4 according to the rules just
described, he amplicude for a pion to scatter from a coliection of
sources fixed at EiyeeerX, may be evaluated. To make the theory
relevant to nuclei, we must take accouat of the fact that the nucleon
positions are distributed throughcut space as described by the nuclear
wave function, Vy+ The simplest realistic choice for Yy, would be a
Slater determinant of single~particle Hartree-Fockzgibsﬁals ¢1( ye
Such wave funibigg are available from semimicroscopic®V'8’! and pge-
nomenological models of the nucleon-nucleus interaction. For
closed shell nuclei, the appropriate wave function .ay be written

A
Cpeeenrrglowy = 1 by(ry) o (44)

where is the antisymmetrization operator. A more reailstic choice
would include a modification of Eq. (44) by two-body correlations
represented by f(rij)

<£1.'-o.£‘\‘!N> - 1I<]j f(rij)a¢k(rk) . (1‘5)



An explicit expression for f£(r ;) and ¢, (r,) might be obtained from a
variational calculation applied to a finite nucleus.

In order to incorporate the nuclear wave functions one may con-
tinue to use diagrammatic analysis. We consider here only the wave
function in Eq. (44). The matrix element we want is

G (t” = £) = YRl G (t7 = &5 Tyheee,T)) by /7 hylo> (46)

This expectation value is 2z straightforward modification to Fig. 4.
Each initisl and final aucleon line is labeled by one of the quantunm
numbers of the occupled orbitals, so that each diagram is multiplied
by the product

3 *
1 [ a7z oa (Tdop (ry) (47)

It is also necessary to determine the sign of the diagram, which has
its origin in the Paull principle through the antisymmetrization oper-
ator in Eq. (44). Because the wave function must change sign upon
interchange of the state labels of any two particles, the sign of the
diagram is

N
=>x* , (48)

where N is the number of interchanges of initial- and final-state
labels needed to bring the orler of labels to a standard sequence.

It remsains now to identify the optical potential U. We savw in
the discussion of Fig. 1 that U is identified as the amplitude for the
propagation of the excited medium. Therefore, to determine U we must
isolate this amplitude from our diagrams. We show in Fig. 5(a) one of
the terms contributing to Eq. (46) with its state labels given expiic-
itly. To identify U we want to make this picture resemble one of the
histories 1in Fig. 1. In order to do this, we will eliminate the
superfluous nucleon lines and the unlinked terms, i.e.,, pieces that
correspond to a spontaneous medium excitation uncorrelated with the
initial and final pion [e.g., the excitation connecting lines D and E
in Fig. 5(a)]. The procedure that accomplishes this change of
appeerance is simply: connect the initial and final nucleon Jines
having the same state labels.  his does not change the value of the
diagram, but it 4immediately aimplifies the pictures because the
noninterazting 1lines [e.g., 1line F in Fig. 5(a)] do not have to be
drawn. The change of notation also eimplifies keerping track of the
Pauli principle. The sign rule in Eq. (48) becomes



Fig. 5. Two equivalent notations for a term resulting from averaging
the diagrem 4in Fig. 4(b) over a product wave function for the
nucleons.

(-)E(2+c) (49)

where I(2 + ¢) is the sum of all the clouved nucleon loops and labeled
"hole" lines. The validity of the rule in Eq. (49) may be verified
after a bit of thought. The diagram in Fig. 5(a) Zs redrawn in the
new notation in Fig. 5(b).

One should notice a very useful consequence of the sign rule 1in
Eq. (49). When evaluating diagrams in the new notation it is permis-
sible to sum the hole lines over all normally occupied state labels
without restriction. The reason one does not have to worry about
overcounting is that the sign rule assures that terms violating the
Paull principle will cancel in pairs. A further consequence is that
the unlinked terms such as the vacuum tluctuation 4in Fig. 5 may be
regarded as occurring equivalently along with all linked diagrams
({.e., all terms linked to the times t’ and t). They are therefore a
comnon factor (they can be shown to be a pure phase) and may be
ignored. However, once they are omitted, those that remein may
contain legitimate pieces that appear to violate the Paulil principle.

We have now finished the (derivation of our expansion, and it may
be compared term by term with any of the historier in Fig. 1 to
{solate the amplitude U for propagation of the pion-excited medium. A



few of the terms that coantribute to <k‘|Ulk> are shown in Fig. 6.
Wien the arrow on the final momentum %° leaves the diagram as in

Fig. 6(a), we shall call the diagram uncrossed. A given uncrossed
term "n" will be denoted by

uncrossed = <k’ (B _(t’ - t)|k> . : (50)

All terms also occur in the form of crossed pieces as in Fig. 6(b).
The expressions for the crossed piece corresponding to "n'" are easily
obtained from the uncrossed by our rules for evaluating diagrams,

crcesed = <-k|B (t - t’)|-k’> , (51)
so that in general F(k’,k; t’ - t) 1is giveu by
F(k’,k; t7 = t) = I[<k’|B (' = t)|k> + <~k|B (t - t*)|=k’>] . (52)
n
From Eq. (12) we find
j‘ .\ , %
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Fig. 6. Terms which contribute to the amplitude for propagation of
the pion-excited medium. The dashed lines represent the initial and
final pion state and do not contribute propagator factors to the value
of the dliagram. (a) These are uncrossed contributions. (b) Each
uncrossed teim has an associated crossed term which must be included.
No attempt has been made to give an exhaustive list.
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<K IU@) k> = [k 1By (w)1k> + <kIBy(w)I-k">] . (53)
Note that our optical potential U is crossing symmetric, i.e.,
<K JU(W) k> = <=k |U{~w)|=k‘> . - (G4

This symmetry property arises natirally in the theory and 1is easily
prelervegl ggier by order in the evaluation of U, In some other
theories<’” this property is established as the result of the
solution of integral equations. The simplicity of U as evidenced in
part by this symmetry property is lost when one formulates the theory
in terms of time-ordered diagrams, but as shown in Ref. 2, this
symmetty could be recovered by complicated diagrammatic resummations.

Equation (53) is our main theoretical result. Expressions for
optical potentials have also been obtained for field theoretical
models by cther investigators (see, for example, Ref. 24).

In the remainder of my lectures, I want to present a systematic
application of the theory to experiment. The idea is to learn as much
as possible about the fundamental couplings and nuclear dynamics. In
order to enhance the possibility for doing this, we shall find it
desirable to extend the theory to describe charge exchange, exploiting
the isospin symmetry of the underlying interactions. We shall make
this extension in the next lecture.

IT1. Applications

Now I would like to describe applicatiouns of the basic theory.
The first application is elastic scattering and the second is c'.arge
exchange to isobaric analog states.

Let me first summarize the main results of the first lecture. I
showed there how to derive the optical potential U for elastic pion-
nucleus scattering from an underlying field theoretical model. Some
of the {mportant properties of this theory are:

(1) U 4s given through a well-defined cluster erpaneion. 1In
order to evaluate U one must know the nuclear single-particle
orbitals and the values of the meson absorption and emission am=-
plitudes given in Fig. 1.

(2) U must be embedded in the Klein-Gordon equation

(92 + n2 + Uy = w?y . (55)



(2) U and the scattering T matrix are crossing-symmetric in
principle; this property 1s preserved order by order in our
cluster expansion.

(4) Multipion intermediate states are intrinsically built into
the theory. .

(5) Short-range pion-nucleon form factors (of a range parameter
A =1 GeV) are proper to use.

The derivation of our results relied on the static approxima-
tion. This is an unnecessary restriction and must be relaxed in order
to compare the results to experiment. The properties listed above
will survive the extension of the theory. In fact, the extended
theory may be cast into a f{orm very similar to that given in
Lecture I, but the rules for evaluacing the diagrams are somewhat
altered. We shall n:xt make some heuristic modificatiorns to take
account of the recolil and binding of the nucleons, but we will not
discuss systematically the required extensions. A complete discussion
of this is given in Ref. 25,

Let us begin by examining the first-order optical potential,
U(l). This is represented diagrammatically in Fig. 7. The boxes are
the pion~-nucleon scattering amplitude. We assume that the nany terms
in the theory contributing to these boxes have been summe.i and that
the result 1is known. This amplitude has not been obtained from the
theory in a completely satisfactorylgﬁnner, but there are derivatiTgi
of it ir & purely Chew-Low model and in the cloudy-bag model,

which give similar extensions of the amplitude off shell. One of the

pX )F A +>@A
A
(oce) z__
(a)
N |+ A H 4+ oo
33

(b)

Fti) + Lowest order optical potential, (a) The general form for
U i. terms of the pion-nucleoa scattering amplitude. (b) Prominent
terms occurring in the £ = ] partial wave of the pion-nucleon system.



very interesting untesolvedze] questions 1s to what extent the
resonance in the (3,3) chanuel is Chew-Luw (multiple emission and ab-
sorption of the pion) and to what extent elementary A In the
absence of a definite answer to these questions, we take guggance from

Ref. 16, which expresses the off-shell pion-nucleon amplitude T wN in @
separable form,

(5'|TﬂN(m)|5> - ZPGV(E')Au(w)v(K) , (56)

whe' : x is the pion-nucleon relative momentum, P_ is a projection op-
erator onto the partial-wave channels [see, for example, Eqs. (30) and
(31)], v(x) is the pion-nucleon form factor and A (w) 18 an energy-
dependent factor which can be related to the experimental phase shifts
in channel o. Figure 7(a) expresses how the amplitude in Eq. (56) s
to be averaged over nuclear wave functions to obtain the optical
potential.

Before recording the result of evaluating Fig. 7, I want to make
a few remarks on the inclusion of proper kinematics, i.e., the exten~-
sion of the 1lowest order optical potential beyond the static
approximation. Consider nonrelativistic kinematics for simplicity and
write the pion-nucleon T matrix in an arbitrary frame of reference as

K'p/ 1T, y(E)Ikp> (57)

where E(E) is the pion (rucleon., momentum and E the incident energy

k2 2
Lot + .
E=wm+ M 5 + e 2M (58)

Translational Invariance tells us how to relate the matrix element in
Eq. (57) to a matrix element of T, , the T matrix evaluated in the
pion-nucleon center-of-mass frawe of reference. The result is

<k’p’IT, g(E)Ikp> = <k 1T (B p) 6> (59)
where
E P 6
R T (60)

with P the total momentum

P=k+p (61)



and 3 tlie relative momentum

mP

K=k~ = (62)

In practice, of course, these corrections must be made
relativistically. 3y 3n:luding the nucleon momentum in Eq. (62) one
mixes 8 waves and p wave.; this is generally referred to as making an
"angle transform.” The encrgy correction in Eq. (60) is very impor-
tant near resonance, but at low energy where the w dependence in
Eq. (56) 1is weak, one often assumes that the struck nucleon was at
rest in evaluating this term.

A few of the important second-nrder terms that must be included
in the theory were shown in Fig. 6. The terms which have been most
extensively studiea in plor scatterivrg are Fig. 6(a3), which 1s =&
manifestation of “true absorption" in elastic scattering; Fig. 6(a4),
which is the Paulil correlation; aad Fig. 6(a5) and (a6), which are,
respectively, corrections for short-range correlations arising from
the p meson and the shcrt-range repulsion in the nucleon-nucleon
interaction. The latter effect is included by introducing the short-
range correlation function f£(r) in Eq. (45). A systematic cluster
expansion of U in terms of the wave function in Eq. (45) is possible,
in which case f£(r) would build up the radiasl distribution function be-
tween nucleon pairs. This function 1s sketched 1in Fig., 8. The
vanishing of this function for small r 1s the effect of the reapulsive
core in the nucleon-nucleon interaction. The correlations give rise
to what 1is sgvitimes called the '"Lorentz~-Lorenz Ericson-Ericsor™
(LLEE) effect. 1lhe evaluation of these rerms is straightforward in
terms of the rules that we have given, aad we will postpone discussion
oi this to lecture [II.

Next I want to discuss the comparison of the theory to low-
energy pion elastic scuattering. The standard theory for this 1is the
theory of K. Strisker, H. McManus, and J. Carr (SMC)a28 The theory
originated in the series of papers in Refs. 27-31. The form of the
theory fitse very anlrely into the framework given in Lecture I. In
Ref. 28, U is given explicitly as

. /Ah\\\\-;,

|
0.5

Fig. 8. Pair distributicn function for nucleons.



U = =4n[b(r) + B(r)] + 4V . {L(r)[c(r) + C(r)]}V

~tn [P ;'1 v2e(r) + 337;_1 vZe(ny] (63)
where

b(r) = py[bpe(r) = e byap(r)] (64)
Bo = bg = (3/21) 1.4 (b] + b}y (65)
e(r) = pTjlegp(r) - e cpa0(r)] (66)
B(r) = pBpo’(r) , (67)
L(r) = {1 = (4n/30[c(r) + C(D)]} , (68)
dp(r) = p (r) - pplr) (69)
P, =1l+uw/M, py=1+uw/24 , (70)

and wheie €, is the pilon charge. The coefficients bo, bl’ CO’ and C1
describe the pion-nucleon scattering amplitude an.

fan=bg*t by s 1T+ (eg+ey g Kk, (71)

where ¢ is the plon and 1 the nucleon isospin operators. The correc-
tion to by in Eq. (65) 18 the effect of the Paull principle 1in s
waves. The quantities B(r) and C(r) are second-order effects
describing the true absorption of plons in s and p weves, respective-
ly. The quantity L(r) describes the LLEE effect; ) is taken as an ad-
justable parameter and is interpreted in Refs. 32 and 33 as the
conbined effect of the p meson and nuclear short- and long-range nor-
relations. The quantities p, and p, are a measure of the importance
of nucleon recoil, and therefore the importance of the angle
transformation. If Py and p, are set equal to 1, then the static lim-
it results.

The importance of the 8SMC potential 1s that 1t gives =a
systematic reproduction of low-energy elastic-scattering data for pion
kinetic energy T < 50 MeV. The same parameters describe the level



shifts and widths of 7~ in atomic orbits. See Ref. 7 for a detailed
comparison of the parameters t: the theory. Suffice it to say here
that the experiment and theory re consistent in most respects.
Perhaps the most significant feature of low-energy scattering is the
relative weakness of U, This comes about ir a rather intricate
fashion. Without second-order corrections, it pays for the pion wave
function to develop high-momentum components to enhance the attraction
in the p-wave plece of _be optical potential, whiczh then becomes
anomalously strong at low energies. The effect of the correlations is
to weaken the p-wave piece of the potential so that at normal
dencities this anomalous behavior does not cccur.”*) As a result, the
plon penetrates farther into the nucleus and 1s more strongly
influenced by the interesting high~density region. The data are not
understood even qualitatively without the second-order terms. The
sensitivity of the scattering to individual terms was calculated in
Ref. 31 and the results shown in Fig. 9. The experimental pointg are
from Ref. 39 and are shown to establish a scale. The more recent fits
to the data are those given in Ref. 28.

Next let me consider pion scattering near the (3,3) resonance.
Here the physics is qualitatively different. For one thing, the pion-
nuclecn scattering amplitude is much stronger, meaning that the pion
penetratez less deeply into the nucleus and that the «cross sections
have a stvong diffractive character. This has the consequence that
one can understand semiquantitatively a large variety of scattering
data in relatively simple terms. (Some of these simple results are
mentioned in Lecture III.) On the other hand, the rapid variation of
the amplitude with energy means that the details of the scattering are
sensitive to the way the nucleon and A33 energies are handled 1in the
evaluation of the optical potential.

Let us begin the discussion of the resonance energy by examining
more carefully the energy in the evaluation of lowest order potential.
Consider for simplicity the uncrossed term in Fig. 7(a). The rapid
energy varistion occurs in 2 = 1 partial wave for the A., contribution
to the amplitude [that the 843 resonance occurs in £ = 1 is evident
from Eq. (31)]. 1In the static taeory the amplitude has the form

1
T -
33 =V w=-m + 1M (w)/2 Vo (72)

where V represents the nNA vertex and w is the 4incident energy. In
going beyond the static theory one must be sure to include in «; the
energy of the struck nucleon "A" in addition to the energy of the
incident pion

W +E, (73)

and similarly replace the mass of the 4,4 by its true energy
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Fig. 9. Demonstration of the importance of the vacigag terms in
Eq. (63) for low-energy pion scalLtering (Tﬂ = 50 MeV) on Pb. The
solid curve represents the full calculation and the circles are the
experiment, taken from Ref. 39. The dashed 1lines are: (a}, the
Kisglinger potential ouly; (b), the result of (a) plus the angle
transformation; (c), the result of (b) plus s-wave true absorption;
(d), the result of (c) plus the Pauli correction.

(74)
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where UA is the interaction potential energy of the A33 with the
nucleus and g the momentum of the A3s. The A33 kinetic energy is, of
course, the same as the correction previousfy discussed in Eq. (690).
One does not currently have a reliable theory of UA’ but as a first
guess one might take 1t to be the same as the nucleon-nucleus
potential, and describe the presumably small correcticns to this
perturbatively in the second-order optical potential. .

A ,henomenology which addresses the modificatiois just discussed
is the isobar-hole model of Ref. 4. Although this model is based on
traditional multiple-scattering theory and is not solved in an opti-
cal-model framework, it is useful to examine the results to obtain an
orientation to scattering in the rescnance region. Their model of HA
includes a correction 8U,, whicn is added to Eq. (74)

AUA = Paulil correction + spin orbit + Wop(r) , (79)

and which describes the energ, of the & relative to that of a
nucleon, The parameter W, and those characterizing the single-parti-
cle spin-orbit force are determined by adjusting them to obtain a best
fit to elastic—-scattering data. The results they ob.ain for W, are
shown in Fig. 10. A positive Rewo indicatus that the isobar 1s less
strongly bound to the nucleus than a nucleon and the negative InWy 1n-
dicates that the isobar width is increaged in the medium due to inter-
actions with other nucleons.
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Fig. 10. Strength of the isobar spreading potential Wy of Eq. (75).
he results are frgg Ref. 4a. The trianiﬁes come from an analysis of
He; the squares, 0; and the circles, .



Let us now estimate the importance of the energy sh_fts that
occur in the modifications of Eq. (72). The effect of the kinetic
energy operator was examined in Ref. 40. There it is shown that 1if
the V’s in Eq. (72) are neglected, then for & per'pheral partial wave
£, the kinetic emergy operator may be replaced by the average given by

1/2
> k2 52 28(c2 + 8%

IR CE DR CE T R CEI A (76)

where k is the 1incident pion momentum and where B is the rate of
fall-off of the nuclear wave-function in the nuclear surface

¥(r) ~ e7BT/p | (77)

If we evaluate for the correction term for 160, taking £ = kR, R =
3.5 fm, and k" = 1.4 fm'l, corresponding to the resorance energy, then

2
<kt Kk
2(M +m) 2(M + m)

+ 25.2 MevV . {78)

What about the potential energies? The average urergy of a
bound nucleon in O can be estimated from Hartree-Fock th=ocy. U
find from Ref. 41 that

£(28 + 1E,

E - N - L]
EY TS 22 MeV (79)

On the other hand, we may estimate <U,> by noting that the scattering
takes place in the nucleus in a region specified by the overlap of the
nvclear density and the square of the plon wave function, so

Jupe) 19, ()12 p(r)d

<U,> —
J1¥ 1% p(r)dr

A

(80)

We have evaluated this“z] for 16O and find that <U,> & =24 MeV for
resonance-energy plons. The energy dependence of <U % i Laown  in
Fig. 1ll. Cywming the contributions in Eqs. (78), (/9), and (80), we
find

Net energy shift = =23 MeV . (81)

This is a significant effect in the denominator of Fq. (72), given
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Fig. 1l. Energy dependence 'f <U,> in MeV. The dashed lines include
the effect of the spreading potential taken from the isobar-doorway
model.

that /2 = 55 MeV. Phenomenological studies“3] have shown that
elastic-scattering data can be systematically reproduced throughout
the resonance region in terms of an optical potentiel similar to that
in Eq. (63), provided the lowest order optical potential is evaluated
at an energy shifted downward by 25-30 MeV, which is very close to the
estimate in Eq. (81).

It 1s worth noting that the width in Eq, 27?) is also wodified
by binding energy and recoil considerations,“' 4 and that in general
one must expect phenomenological energy shifts to be complex.

In order to test any given dynamic:' theory it is of courke nec-
essary to calculate the energy shift rather than treat it as a phenom-
enological parameter. This is especially tvue of theories which ad-
dress only elastic scattering, because the dynamical effects that are
included in the second-order optical potential affect the theory in
much the same way as the energy shifts arising from binding energy and
recoil correct’ 1s. Progress is beinj; made ig 2g&1d1ng a theory ({in
which these e! < are actually calculated,” but I will not fur-
ther discuss t ine of research here.

let me now discuss the extensinn of thege ideas to include pion
charge exchange to disobaric analog states, exploiting the (approxi-
mate) isuspin symmetry of the s'.rong interaction. If we define the
total isospin operator,

TeTy+¢ (82)



vhere ¢ is the pion isospin operator and Ty is the nuclear isospin op-
erator,

SR S (83)
-N 2 1-1 ~i .

then the isospin invariance of the interaction is expressed by stating
(8,7) =0 . (84)

This is true, of course, only to the extent that we nmit the Coulozb
force and other presumably small isospin-breaking terms. If we assume
Eq. (84) to be true, then we may express the scattering amplitude F in
the space spanned by the 1sospin components of the nuclear ground
state and nuclear single- and double-isobaric analog states explicitly
and generally in terms of ¢ as

FufoaFlos Iy+ Fply » T2, (85)

noting that this operator must also commute with T,

[F,T] =0 . (86)

~

Since we want to be able to calculate F_in an optical model theory, we
must cY0o08e U to have the same form as F in Eq. (85),

O ugrup g Iy+0y (g I0? - (87)

The term U, is refarred to as the isvscalar, U1 as the isovector, and
l, as the isotensor potential. Use of an optical potential of this
form has been previously advocated in Refs. 27 and 46. An alternative
approach to thz7823?y of charge exchange is the distorted wave-impulse
approximation, '?

In physical terms, the extension of the theory to include
isobaric analoy stetes means the following. For nuclei with a neutron
excess, we may lrepresent the ground state as in Fig. 12. In single-
charge-exchange scattering to the isobaric analog state any one of the
N-Z excess neutrong can be converted to a proton in the same
space-spin orbit. The resulting collective excitation is the isobaric
analog transition. 1ln double-charge exchange the same thing may
happen to two of the excess neutrons. Mathematically these two states
are represented as, respectively
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Fig. 12. Representation of the ground state of a nucleus having a
neutron excess. The single (double) isoharic analog state is a
collective excitation in which one (two) neutron(s) &t a time are
converted to protons with the same space-spin quantum numbers.

1AC1)5 = Thiga> / <gsITyTHigs> and (88)

1A(2)5 o (ThHH21gs> / <gsIT AT Igs> (89)

where T§ is the nuclear isospin-~raising operator. (lsospin-breaking
effects may be formally taken into account by repiacing Ty with the
"analog spin" operator W. See Ref, 49.) Because the three processes,
namely elastic scattering,

lﬂtgs> - |n135> ; (90)
single—-charge exchange,

|t+gs> - InOA(1)> H (91)
and double-~charge exchange,

Intge> » 1n"al2)y (92)

are intimately connected by the symme:try of isospin invariance, we ex-
pect t. find & relatively simple theoreti.al description which will



tell us directly about the isospin dependence of the nuclear response
&3 represented by the optical potential.

We will now discuss how the results in Lecture I may be extended
to charge exchange, following Refs. 50 and 51. We¢ will use the dideas
of the spectator expansion of Ref. 52. The spactator expansion shows
how to systematically express the optical potential U in terms of the
T matrix for the scattering of a projectile from 1,2,...,N nucleons.
In Ref. 52 it was used to give U for elastic scattering, but we shall
extend it to calculate the optical potential for the combined theory
of elastic and charge-exchange scattering.

Begin by defining A(“)(i) as the sum of all diagrams which have
n hole 1lines and which contribute to the scattering amplitude of a
pion of charge 1. This qganticy is specified by the rules of
Lecture I, Also define <U(n >" as the matrix element of the nth-order
optical-poftential piece of Eq. (87) corresponding to the scattering of
a plon of charge 1 from the ground state. Thus, the brackets < >
mean, for example,

Oyt = (ntee 0(®) ntgs> (93)
The spectator expansiou says simply
(ﬁ(1)>1 - A(1>(1)
<ﬁ(2)>1 - A(2)(1) - <a(l)Goﬁ(1)>i
(94)
AOBE 2 A gy - @@ AL (g (252

- gy DG G

and 60 on. The serie: is Jdefined so that the matrix element <f‘>1 of
Eq. (85) can be calculated by solving the equation

-~

F e+ UGoF (95)

with the requirement that <F(“)> T A<")(i) To obtain U™ {n the
operator form of Eq. (87) from A 1ot bg (94) we use isospin in-
variance. It is straightforward to 1nvert Eq. (87) to obtain

- 1 .+ a___ ‘0
U2 o1y (<U>™ + < <Yy,



U = %.<<ﬁ>° - <0>%) + TU, , and (96)
Uy = <0>0 - TU, ,

where T 1is the ground-state nuclear isospin.

By wusing thir procedure we are led to an optical-model theory
which is similar in form to that of SMC, but which now contains ex-
plicit dependence on the isospin operators ¢ §T1 Tye 1 will now state
the overall form of ;?S optical-model theory. §he theory employs a
special form for U ) which was derived in Ref. 50 and given below;
this result will be discussed in greater detail in Lecture III. The
optical model is

U =v . [80r) +88(0)]v = k2[E(r) + af(n))

1
2

(py = DVE - 2 (o, - 1Al , (97)

-

where E and I represent the lowest order optical potential and have
the form

-~

S=lo*+ g m InGp (98)

and where AE aad Af represent the second-order optical potential and
have the form

AL = BEg + BEyg + Ty + 8L,(¢ + TO? . (99)

Note that the lowest order optical potential has no igotensor term,
because two nucleons must be gtruck in order to charge erchange twice.

We find % convenieg&)to express [ and Af in terms of a set of
A

parameters and A respectively. For the lowest order
potential
Lo = Aél)o(f) and (100)
NeE

L) = o B0(E) (101)



where the J\-parameters are related to the coefficients of the
pion-nucleon scattering amplitude of Eq. (71) by

—— o)

T . 8“:;51 , o

AP @ 2 ey, and (104)
P

D - %% ¢ - (105)

The tarred quantities refer to s waves and the unbarred to p waves.
The quantities P and p, are defined in Eq. 70. As we have indicated,
near resonance we expect to have to calculate the amplitudes b and c
with a complex energy shift. In second order we find

2 2 . 2
o 3 (2) p°(x) 2) 8p°(xr) _ 1 (2) 8p°(x)
agy = 2§2) 22D 4 5 T 280 2
°0 °o Po
(2) (2)
A A 2
- plp 2 Ap
G e 5y 0 (106
2) 2)
sE. 3 po? | 12,2
2 TQ2T - 1) oy 72 g

where the A(z) may be calculated from the cluster expansion of
Lectu<e I, as will be digﬁgssed further in Lecture IIl. Several im-
portant results are that A\ avre expected to be strongly energy
dependent and weakly dependent on N, Z, and A in the region of the
(3,3) resonance. When Coulomb mixing of the nuclear wave functions 1is
taken 1into account, thi quantity Ap(r) should be taken to be the
valence neutron density49 instead of Pn = Pp:

Expcrimental results for elastic, eingle-, and double-charge
exchange are being accumulated now very rapidly at the meson
factories. I shall describe next our preliminary atlLempts to under-
stand these results in terms of the theory just described.

The first low-energg ’ingle—charge—exchange scattering data have
just been taken at LAMPF. 41 The angular distribution 18 shown in
Fig. 13. The parameters of Stricker, McManus, and Carr huve been used
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Fig. 13. Angular distributign for pion single~charge exchange to the
isobaric analog state of *“N at 48 MeV. The figure is from Ref. 54.
The short-dashed curve 1s calculated without second-order terms. The
solid curve includes the isovector Lorentz-Lorenz tcrm and the long-
dashed curve includes a small phenomenological adjustment of the
second-order isovector term.

for the 1isoscalar potential. Without any isospin-dependent second-
order terms we obtain the short-dashed curve. The discrepancy in the
forward direction 1is striking. Including the isovector second-order
u(2 arising from the LLEE term gives the solid curve, which now lies
much closer to the data. The physics of this improvement is interest-
ing. At low energy there is a strong tendency for the repulsive
s-wave and attractive p-wave terms in the pilop-nucleon interaction to
cancel in charge-exchange scattering. This gives rise to a dip in the
forward direction of the fre: pilon~-nucleon amplitude. For
plon=-nucleus scattering, the interference 1is strongly modified by mul-
tiple scattering. It appears to be a coincidence that the correlation
effects sgain weaken the p waves (see discussion of low-energy elastic
scattering in this lecture) sufficiently to restore a large part of
the interference observed in free pion-nucleon scattering. With =&
minor adjustment of the isovector second-order term one could come
even closer to the data. The necessary adjustments in the isospin de-
pendence may of course be calculated microscopically from the theory
presented in Lecture 1I.

let me now move to & discussion of the combined theory of
elastic and charge-exchange scattering in the resonance region. A
large body of data is beginning to be acquired at these energles,
which makes the confrontation of theory and exneriment particularly
exciting. I will show next some of our attempts to fit the



experimental data with the theory just described, and in Lecture III [
will discuss the extent to which the theory and experiment are giving
a consistent picture. The results?3] that 1 will show are preliminary
and may change quantitatively as the analysis procedure is made more
internally consistent.

The first step 1in the analysis was designed to determine a
single energy shift which would describe elastic scattering for N = Z
nuclei throughout the resonanc» Zegion. Fitting elastic-scattering
data for the nuclei ! 0, Si and “Oca we determined that

AE = 28.7 + 151 MeV (107)

would do a reasonably good Jcb of fitting the depths and positions of
the first minima for n* scartering at 165 and 180 MeV. The fits were
somewhat bettez at 180 MeV, and I show in Fig. 14 the resu}t for nt
scattering on "“Ca at this energy compared to experiment.

|0?,_ -

do/dSl (mb/sr)
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Fig. l4. nt elastic scattering from aoCa at 180 MeV. The theory con-
taine only lowest order terms with an energy shift of AE =
28.7 + 151 MeV.



Using the va%se uf thizsnergy shift in Eq. (107) weonext varied
the parameters AO / and Al to obtain a §§i to the o(0”) cross sec-
tion for single-charge exchange at 164 MeV. Without second-order
termg3] the theory underastimates the data by as much as a factor of
two. The parameters of the best fit are .

2§2) = (0.03 - 2.i51) fu° and (108)
2{2) = (1.99 + 9.781) £ , (109)

and the results are shown in Fig. 15. Note that both the magnitude
and the N, Z, and A dependence are very well reproduced. In order to
fit the magnitude a ruther large 1isovector coefficient Alz is
required.

We next determined x(z), the coefficient of the second-order
isotensor potential, S?SLng the 5° peasurements of double-charge
exchange at 164 MeV. > The results of the fit are shown in Fig. 16.
Again we see a penerglly acceptable reproduction of the data. The

{
best-fit parameter Az is

A§2) = (0.08 + 7.041) fn® . (110)

The value Aiz) which we used was taken to be
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Fig. 15. Zero-degree cross section for SCX at 165 MeV vs A. The
crosses are the results of the calculation described in the text.
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Fig. 16. Five-degree cross section for DCX at 165 MeV vs A. The
crosses are the results of the calculation described in the text.

2 {2 - (1.5 + 21) fn> (111)

this quantity 4is a theoretically determined number, the or §in of
which will be discussed in Lecture III. A 1large value of Ag ) s
required to give the correct scale to the cross sections.

The optical potential is now completely determined empirically.
However, there exist angular distributions for double-charge exchange
which have beer difficult to wunderstand theoretically. The most
puzzling is 180('n+,~n-)18Ne (Ref. 59), whose first minimum lies at 22°,
in contrast to the predictiuns of most theories, which give this mini-
mum to lie at 30-35"., Using the set of empirically determined param-
eters, we find the angular distribution shown in Fig. 17. We see that
the minimum occurs close 58 22° in accordance with the data. The an-
gular distribution for ““Mg has been calculated and also looks quite
satisfactory. For 18¢ the minimum occurs where the minimum of the
data appears, but the theory overshoots the second maximum by a factor
of four.

What is one to make of these results? At the present time it is
hard to draw quantitative conclusions because (1) some of the data are
preliminary, (2) the elastic-scattering data at 164 MeV are not
reproduced as well as they could be by our energy shift, and (3) the
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Fig. 17. Angular distribution for 180(n+,n')18Ne at 165 MeV.

theoretical value of A22> will change as we refine the calculation. I
do not expect qualitative changes in the parameters, however, and in
the next lecture I will make a comparison to the theory with this in
nind. The fact that the trends of the data sre so well reproduced by
the theory is, I believe, a strong indication that our basic assump-
tions of isospin invariance and scaling of U with density are valid.

A topic of interest for resonance-energy scattering is applica-
tion of the eikonal method. It turns out that relatively simple ana-
lytic expressions for cross sections and their rclationship to the op-
tical potential can be obtained by using this method. This approach
has been developed in Refs. 60 and 53. One of the results established
there is that the analytic expressions are surprisingly accurate. 1
do not have time to go 1into detail, but I would like to end this
lecture by pointing out several results which are easily derived using
thls representation.

One result is that the single- and double-charge~exchange cross
sections at zero degrees should be very sensitive to the valence nf%—
tron densities. It 4is shown in Ref. 53 that in the absence of U(?)
the sensitivity of the cross sections to N, Z, and A occurs
principally as

=2 R). 2
RS (Ao( ))

05cx(0°) ~ -
p(R)

and (112)
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T p(R)

ODCX(OO) ~ ﬁz (

where R is numerically equal to the impact parameter at which the mag-
nitude of the pion wave function is attenuated by a factor of .1/2 as
the pion passes through the nucleus. In practice this occurs at
approximately the 102 density point for resonance-energy pioms, 1i.e.,
where

~
it

p(R)

= 0.1 . (114)

e

The trends of the experimental relative cross sections for SCX and DCX

(except 4803; see discussion in Lecture III) cggiely follow Eas. (112)
and (113) with the simple "scaling" densities,

Pn --% p and (115)
Z
Pp -=ze - (116)

The gross features of the cross sections are thus of a geometrical
tharacter. However, the fluctuations of the data around the scaling
model are sigrificant and depend sensitively on the details of the
nuclear wave functions®?) in the way prescribed in Eqs. (112) and
(113). Onc concludes from this that fits to the data such as those in
Figs. 15 and 16 could not be obtained unless a reasonably good
description of nuclear wave functions was used. We have used through-
out our analysis the densities of Ref. 20(a). The effect of the
second~order potential 1is mostly & renormalization of the theory in
these figures in a way that 4is uniform throughout the periodic
table. 51

To summarize, we have i1elied on the expectation that the nuclear
structure is much better known than the reaction theory at the present
time to learn something about the latter aspect of the theory. We
hope that in the not-too-distant future we will be able to turn the
question around to use the newly obtained knowledge of the reaction
theory to learn new details of nuclear structure.

III. Evaluation of Higher Order Optical Potential

In Lecture I, I derived a perturbation expansion for the optical
potentlal, U. One of the main worries about such an expansion is that
the higher order terms will be found to be large and that the series
will not converge. If the higher order terms are so large, we would
need in addition to the expansion for U a nontrivial principle for



deciding the order in which to evaluate the expansion. In this
lecture I will discuss several of the summation procedures which have
been utilized in the literature.

The most straightforward is the "hole-line expan 1on,“24] which
is in spirit much the same as the spectator expansion discussed in
Lecture IT. The idea is simply to collect together all terms having
one hole line as the leading term in the optical potential. As I have
discussed, this sum would give the free pion—nucleon scattering ampli-
tude. The leading correction to this would be the sum of all terms
with two hole 1lines, etc. The rationale for this expansion 1is that
successively higher order corrections involve -~uccessively higher
powers of the density, and one therefore relies .n the hope that the
nucleus 1s of sufticiently low density that the expansion will con-
verge rapidly.

In the event that the second-order correction is large, a more
powerful method of summing Eq. (52) would be required. One such
method was proposed and studied in Refs. 38 and 61 in a relatively
simple potential model. In this case we attempt to evaluate all
corrections in terms of '"dressed pion proupagators," i.e., all internal
pion lines in Eq. (52) interact with the medium through the optical
potential. The series for U is much more compactly summed, and one
must be careful to avoid double counting. Bec.use U 1s then defined
in terms of itself, the problem becomes oune of a self-consistent na-
ture. I will come back to this idea later in the lecture,

There may, of course, be other ideas which will prove useful for
summing Eq. (52) to obtaia the optical potentisl. As we learn more
about the phyeics we will be bet‘er able to distinguish amonj, “he var-
ious possitilities. We shall turn now to the evaluation of second-
order terms in the hole-linz expansion.

The second-order terms contributing to B_ in Eq. (50) have the
structure shown in Fig. 18; l.e., there is a direct term, Fig. 18(a),
and an exchange term, Fig. 18(t). If we let D(EI'EZ) denote the value
of the diagram to be averaged over the nuclear wave function, th--
these terms contribute to the optical potential as

Fig. 18(a) = [d3r,[d’r, TUAIT> “Eplvg> [<WpiTgd> <DplypdDiry,ry)
A B (117)

Fig. 18(b) = -fd3r1fd3r2 L oSYAIT)> <Ky ivp> <Wgiry> <Xy 1w dD(X;,x,)
A,B (118)
I have indicated for simplicity only the nucleon coordinate labels in

Eqs. (117) and (1!8). 1In order to treat charge exchange, the {scspin
wust also be isolated and treated explicitly.
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Fig. 18. Classification of terms contributing to Eq. (50) into direct
(a) and exchange (b) pileces.

The expressions for Fig. 18 may be written in terms of the
density matrix,

p(Ty,rp) = §<£2|‘PA> VAlZy> - (119)
Thus, Eq. (117) is expressed in terms of the product

n(rl,rz) z D(rl’rl)p(rZ'r2) R {120)
and Eq. (118) in terms of

n(ry,rp) = p(r;,ry) p(ryery) (121)

¢ mplifications become poesible when the densit* matrices are expanded
a.ound their nuclear matter values.zo(a) The local density
approximation (LDA) apecifies

0(_‘:1»{2) E4 D(R)Sy(kpr> » (122)

where



= (51 + 52)/2 and (123)

tx

 la ]

- 51 b I2 . (124)

The density matrix in Eq. (12Z) is evaluated in terms of the. nuclear
matter Slater function,

Sp(x) = i% {sin ¥ - X cos x) , (125)
X

and local Fermi momentum kF(R),
kg = 3n2(R) . (126)

If we apply the LDA separately to neutrons and protons, we are able to
write an expansion of U in terms of the quantities p(R) =
pa(R) + op(R) and 4p(R) = p (R) = op(R)-

Let me now make several technical comments about refinements for
the LDA which have been used for the practical evaluation of U in this
theory. The LDA is designed to apply exactly for an infinite system,
whereas for pion scattering near resonance the most important
densities correspond to the nuclear surface region. We therefore need
to apply a correcrion. We make the correction assuming that the
density in the surface behaves as

p(r)) = p(Rye (F17RI/8 (127)
If we take tie diffusenesr 8 to depend on R as

a(R) = =p(K)/p"(R) , (128)

then the sxponential expression in Eq. (127) may be expected to repre~
sent p\r) locally around any R.

The expression Eq. (127) may be simplified. For wscattering in
the resonance region we may think of the pion as traveling along a
trajectory which is a straight line of impact parameter b parallecl to
the Z axis. The important interactions occur where these trajectories
just graze the nuclear surface; pions muving along trajectories of
smaller impact parsmeter are 1eadily absorbed out of the elastic chan-
nel. Because of this, the most important interactions occur where R
is large and r is small, so
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We may drop the term R . r/2 because R and r are nearly perpendicular.
Inserting Eq. (129) into Eq. (127), we find for the direct term in

2
n(r),r,) = p2(R)e™F /4Ra (130)

A similar approximation 1is pleusible for the exchange term, and we
take

2
n(r,,r,) = pz(R)S%(kFr)e-r /4Ra (131)

If one now evaluates the terms contributing to Fig. 18 using the
diagram rules of Lecture I, employing the spectator expansion of
Eqs. (94) and (96), and using these approximations for the density ma-
trices, one finds that U can be cast into the following form,

3(2) o Uéz) + U§2)91 CoT U§2>(Q . 3)2 , (132)

where

ng) - _ vRIV(KRT) o fd3R =iR+ (k"=k)

884 (R) (133)

and where Af (R) is given in Eq. (106). We have assumed that the in-
teraction amplitudes out of which the diagrams are built act in rela-
tive pion-nucleon p waves; this then leads to the characteristic
p-wave Ei + &, form (Gé is a unit Ysgtor in the direction of k’). 1f
8 waves are important, then would contain other partial-wave
contri{butions with the correspo?Q§ng £, of the same form as Eq. (106).

Notc that the coefficients Ay “ qs (106) are intcgra 5 over the
relative coordinate r = Iy = Ly the evaluation of the ) corre-
sponding to a given diagrnm is strajghtforward but nontrivinl. Fur-
ther details may be found in Ref. 50.

1 want to consider next the results of the evaluation of A 2)
corresponding to the sequential nacattering terma. A fev of the
sequential terms were already mentioned in connection with Fig. 6, and
I have collected the relevant terms i{n Fig. 19. Flgure 19(a) and (b)
are the direct and exchange matrix elementn of the mequential scatter-
ing procemsen. Figure 19(c) 1is the once-iterated lowest order optical
potential which mumt be subtracted from the sum of Fig. 19(a) ard (b)



Fig. 19. Two-nucleon processes contributing to tre pion-nucleus opti-
cal potential. These terms are second order in the plon-nucleon scat-
tering amplitude and are referred to as sequential scattering
processes.

as indicated in Eq. (93). Figure 19(d) is the crossed process corre-
sponding to Fig. 19(a). It can be easily verified that Fig. 19(a).
(b), and (c) are sutomatically crossing symmetric if the pion-nucleon
amplitude 18 crossing symmetric; the sequential processes are there-
fore examples of terms for which it would be wrong to add an explicit
crossed term in Eq. (53).

It 18 interesting to note that the iteration of the lowest order
optical potential [Fig. 19(c)] needed in evaluating the spectato:
expansion in Eq. (93) picks up contributions only from intermediate
analog states. This follows from the relationship

¢+ Ty InTge> = 2/T 120al1)5 (134)

One consequence is that the contribution to AE(Z) arising from the
subtraction of the lowest order optical potential has the form

P a2

a2 (cuMg (D)
12 Po

. \13!’

On the other hand, Fig. 19(a) and (b) allow for the sequential scat-
tering to 1A(2)y through all possible intermediate states. One does
not wsee explicitly the sum over al]l states because the assumption of
fixed nucleons i equivalent to performing this sum in a closure



approximation.6] To convert these amplitudes for elastic scattering
into a contribution to the isotensor potential, we use Eq. (96),

u(2) . —Yr(z'rl- : (w & ul=) - 2p0)y (136)

and obtain

2
MNP 2

8£(2)(closure) = =Ty S (137)
0

Note that Eqs. (135) and {137) have different dependence on T. One
find that the diagram in Fig. 19(c) is the only one t?as contributes
to A 2 whereas all other terms in the expansion for U 2 contribute
to A%z) in Eq. (137). We shall see that this T dependence of the
isotensor potentia. is important in understanding the double-charge-
exchange data.

The optical potential as given in Eq. (106) will be most useful
if the strongest dependence on N, Z, and A is contained in the explic-
i% factors of T, p, and 4p. If this is the case, then the parameters
Aiz) can be calculated once and for all at a given energy, and they
would characterize scattering throughout the periodic table. We can
see the extent to which this is true for E?e sequential scattering by
referring to Fig. 20, which shows the A ¢ for these terms. The cal-
culation was performed as just described, wutilizing a short-ranged
correlation function which cuts off sharply at 0.5 fm. The contribu-
tion of the p-meson exchange between the nucleons was not considered.

L
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Fig. 20. Calculated parametars characterizing the second-order
sequential contributions to the optical potential at T, = 180 MeV as a
function of nuclear mass number A, The solid dots result from evalu-
ating U(R) at R = R (see di ES'.iOE of Eqs. (112) and (113). The
hatch marks show the change in Ag as R {8 varied by #0.5 fm.



We note that the Agz) shown in Fig. 20 are independent of N-Z to
a very good approximation. The coef{%sients haYS a weak dependence on
Acggd R, especially apparent for ImAz and ImAl ) Calculating the
A

as a function of energy we find, as expected, a very strong de-
pendence on the pion energy.

presented in Lecture II, we took the parameters ) to be constant as
a function of N, 2, and A agd also independent of R. Because of the
residual dependenii of Aiz on R and A, the empirical parameters rep-
resent averages <Ai )> over the periodic table where the data exist.
We would expect some weak, systematic, A-dependzgs discrepancies in
the fits to the data arisine from variations of ) around < )>.
This discrepancy is not, however, prominent in the fit to SCX due to
the fact that a large portion of the scattering occurs through terms
linear in the nuclear densities. For the case of DCX, data exist o?ig
for relatively light nuclei where the percentage variation of the A
with A as seen in Fig. 20 is still small.

In our fit to elastic, single~, and double-zgsrge-exchauge data

The empirical determination of A(Z) is very interesting because
it bears directly on our understanding of the many-body problem of
strongly interacting particles. We have discussed in detail a theory
of these quantities, and a comparison of theory to experiment will in-
dicate the extent to which our ideas are valid.

In order to compare the values of the coefficients 1in
Eqs. (108), (109), and (110) to the predictions for the sequential
terms, we must choose an energy at which to evaluate the latter. Due
to the pogsibility of energy shifts, it is not clear, without further
theoretical study, what this energy should be. If we choose the
incident pion energy, 164 MeV, then we find

xg” - 7.25 + 0.974 fm? (138)
xﬁ“ . 15.4 + 1,404 fm3 (139)
)\52) L] _600 - l‘061 fm3 . (ll‘o)

In the case of the isovector optical potential, I believe it is
nigniiﬁsnnt that both the theory and the cnlculazﬁgn give large values
for A « The plece of the theory which makes ) large is the Paull
term, Fig. 20(b); 1i.e., the effect of short-ranged correlations is
small. The theoretical value is 502 larger than the experimental re-
sult and differs in phare by, 73°, A decreunse In the magnitude of A
and a rotation of phase in the desired direction would occur if one
were to use the medium-modified pion-nucleon scattering amplitude f



discussed at the end of Lecture III in evaluating this term, dinstead
of the free plon-nucleon scattering amplitude.

In the case of the isoscalar potertial Aéz) we again find that
the Pauli term dominates. Now, however, the theoretical and empirical
values differ greatly in both phase and magnitude. This lack of
agreement is not surprising in view of the expectation that the Pauli
terms will be balanced and perhaps dominated by collisional broadening
effects, which we have not yet considered (see discussion later in
this section).

The isotensor potential coefficient ) 2) is of the same
magnitude in the theory and experiment but differs in phase by 1460°,
The origin of the empirical value is something of . mystery ror the
microscopic theory, and we return to a wmore detalled discussion of
this term a bit later in the lecture.

We are able to make a somewhat stronger statement abov: our un-
derstanding of the dependence of the isotensor potential on N-Z. It
had been something of a puzzle 2n the empirical study of the T depend-
ence of do/dR (5°) for DCX why 8Ca (which has T = 4) has a cross sec-
tion so much smaller than the one predicted by the semiclassical re-
sult in Eq. (113). We can now undefsgand this as & manifestation of
the fact that the iteration of U{! yields a cross section with the
wrong T dependence. Using our knowledge of the T ??gendence of the
isotensor potential corresponding to the jiterated U [Eq. 2535)] and
the closure result [Eq. (137)], we find to lowest order in U

m~ _ 2
99 (closure) = C(ZL 1) %% [no U(z)] , (141)

dn T

where the constant C can be determined from the details of tle dynami-

cal model. Taking Eq. (113) for the right-hand side in Eq. (l41) we
obtain

T (O - mr—ry[Ap(R] ’ (1)

We compare in Table I the experimental forward double-charge-
exchange cross sections at 165 MeV to the theory using the scaling
densities of Eqs. (115) and (116)., The experimental numbers are from
Refs. 62 and 63, Note that th? gheory is substantially larger than
the experiment for 8ca without U , as emphasized in Ref. 63. When
the calculation 1is repeated using Eq. (142), then the agreement is
much {mproved.

The details of the theory in Table 1 will change when more real-
istic densities are used. There is some reason to believe that the
value of the crows section for “Zca would be particularly sens!tive to



these 1improvements through core polarization.64] Our main point is,
however, that it 1is 4important to consider mnonanalog intermediate
states in double-charge exchange, especially for nuclei with large T.

Table I. T dependence of (u+,n') to {gobsric analog states at
'I",T = 165 MeV. The theory is normalized to

Exp. (ub/sr) Theory Comment

Target 3
18o 1 1t 0.1 1
6Mg 1 0.3 ¢ 0.1 0.29
agcla 1 0.14 * 0.04 0.06 2)
Ca 4 0.29 % 0.13 1.07 no U
48c, 4 0.29 + 0.13 0.27 with u(2)

In the future we will see mnre effort devoted to the evaluation
of the other second-order terms of U, some of which are redrawn in
Fig. 21. Figure 21(a) refers to wultiple reflections between two
nucleons, which we shall see leads to lar:e collision broadening.
Figure 21(b) is a term in which the & interarts with the nucleus,
and Fig. 217c) and (d) correspond to the pion interacting with & 3
components in the initial or finel nuclear ground state. There may ge
other mQre exotic terms; for example, excitation of T = 2 dibaryon
states®]) 1llustrated in Fig. 22,

P H%

e W\f\
Vs ) \

te) (d)

Fig. 21. Additional two-nucleon processes contributing to the
pion-nucleus optical potential, (a) is third order in the
plon~nucleon scattering amplitude and is referred to as a multiple
reflection, whereas (b)-(d) 4involve various lsobar-medium effects.
Each process has a corresponding exchange and crossed plece.
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Fig. 22. A speculative term Fig. 23. the-degree cross section for
which would contribute to 0(w M) as a function of energy
double-charge exchange. The long/short-dashed curve 1s the

sequential process. The short-dashed
curve is the sequential plus Fig. 21(c)
and (d). The solid curve is sequential
plus Fig. 21(b).

The "double delta" terms in Fig. 21(c) and (d) have bLeen of a
great deal of interest lacely°6] in understanding the connectjon be-
tween analog and nonanalog double-charge exchange. It has been
speculated, in particular, that an interference between these terms
and the sequential scattering terus might be responsible both for
moving the minimum in the O(n+.n ) Ne differential cross section to
22¢ (in the manner discussed in Lecture II) ang7§or the characteristic
Ygergy deggndence of the excitation function, shown in Fig. 23 for

O(n We have calculated these terms and in addition, the
bqq interncting with the nucleus, Fig. 21(b). Figure 21(b) is large
because when one of the on resonance, 8o is the other.
Figvre 21(b) 4s, 1in pltt?cular, larger than the terms in Fig. 21(c)
and (d), which contain at most one resonant A33

The results of our calculation are bassd on the assumption that
the two neutrons in 380 are in the (d configuration. We allow
the & to interact with the nucleus arough both n- and p-meson
exchange. The contribution of Fig. 21(c) and (d) is dominated by the
tensor component of ils interaction, and these terms are therefore
reduced when the p meson I8 included. ‘‘he verm in Fig. 21(b) is
determined by a combination of the tensor and spin-spin interaction in
such a way that, for strong p coupling [see Eq. (19)] and short-ranged
form factors lApAA = 1.2 GeV/c~~-nee Eq. (35)), the contribution of



this terr 1s dominsted by the p meson. Its precise value is very
sensitive to prA and ApAA'

The results68] a;i shown in Fig. 23. For purposes of comparison
we show the iterated UL1) (long-short dashes). It has the right order
of magnitude, but undershoots the data at low energy and overshoots it
above resonance. When the contribution of Fig. 21(b) is added with
strong p coupling and A ,, = 1.2 GeV/e, we get the solid curve. The
agreement with experiment 15 vastly improved at lower energies, but
the theory overshocts the cross egecticn in the vi-~inity of the
resonance by more than a factor of fcur. We find some tendency for
the minimum of the angular distribution at 164 MeV to move 4in the
proper direction (it comes in to 28°). Because of the strong sensi-
tivity to pr and A LA? the results of the calculation of Fig. 23(b)
are very mogel dependent. This is true to a much lesser extent for
the results of Fig. 2i(c) a?d (d). Thece terms contridute through a
higher order temsor in U 2), which we have added to Eq. (133). The
rhort-~dashed curve ir Fig. 23 18 the sum of the sequential plus
"fg. 21(¢) end (). We turncd the p-meson coupling off to enhance the
contribution of Fig., 21(c) and (d), and it is seen that even then the
result is ecsentially negiigible.

Thugs we have found a large contribution of Fig. 21(b) and a
small contvibution of Fig. 21(¢) and (d). Unfortunately, we are
unabls to unieistand the data with the combination of the sequential
plus douhle 2 t/:irms. We have aliso been unable to find a conventional
term which, when added to those we have evaluated, will give the
experimental reevlts. The miéin terms which remain to be evaluated are
the mnultiple reflectior and true absorption pleces. Of these two
contributions to the isotenscr potential, the true absorption will be
relatively small becausc the neutron pairs have T = ], and true ab-
sorption occurs domiaantly on T «+ O pairs.69 The nmultiple reflection
will be much larger, but 1ite phase 1s similar to that of the
sequentisl processes, and will therefore not reproduce Lhe structure in
the data. A term which would have the correct phase is a (broad)
resonance such &s that shown in Fig. 22 with an energy of several
hundred MeV above the A33.

let me ruw turn to the finali toplc of these lectures, which
comes back to a q.estfon raised at the beginning of Lecture IIlI,
namely, what o do when higher order terms in U become too large to
eva)uate perturbatively. A case in point is the multiple reflection
term in Fig. 21(a), which has been found to be 1large in hcavy
nuclel. /%) The 1da proposed in Refs. 38 and 6] 1is that the plon
cloud around the Aqq should be allowed to interact with nelghboring
nucleons in a self-consictent faghion. This leads to a definition of
the self-consistent pion-u'cleon scattering amplitude t and the
medium-modified plon propagator G, which are then to be ured for
evaluating all hipr.r order corrections. It was shown in Ref. 61 that
the new expansioun appesrs to converge taster than the hole-line
expansion in the resounance region, and the ressons for expecting this
improved conver ence throughout all orders was indicated.



The study reported in Refs. 38 and 6] was made in a static
potential model for the case of an infinite medium, but the ideas can
be extended o more comprehensive theories such as the field
theoretical model which is being developed here.’1l Let me describe
briefly the static potential model theory, which was applied to evalu-
ate the isoscalar term in’ the amplitude f. ’

The equations determining £ are shown in Fig. 24. In the actual
calculations, f was evaluated by solving an integral equation implied
by the sequence in Fig. 24(b). Because the pion self-energy is de-
fined in terms of f, the equation i1is nonlinear. Short-ranged
correlations wer. allowed to act between all successively struck
nucleons. The pion-nucleon form factor was assumed to have the form
given in Eq. (75) with A = 765 MeV/c [see discussion below kq. (75)].
The self-energy in Fig. 24(c) was fit to a Breit-Wigner function. The
terms included were: £ plus all -« :her legitimate direct multiple
reflections of & dressed pion between two nucleons. By a dressed
pion, I mean that the pion propagator was the sequence in Fig. 24(d).
From this Breit-Wigner parameterization it was possible to determine
W and then to compare it to the ,henomenological values of
isobar-hole model [see Eq. (75) and Fig. 10]. The results are plotted
as the solid lines in Fig. 25. The agreement is not perfect, but one

Fig. 24. Coupled equations _determining the self-consistent pion-
nucleon scattering amplitude f in terms of the free amplitude f.



sees that the magnitude and sign of the empirical isobar-nucleus iso-
scalar potential is reprr uced by this calculation. If this spreading
interaction is converted to a second-order isoscalar g ical
potential, it contributes a large negative value for Imi at
164 MeV, as it corresponds to a broadening of the A34 resonance. This
sign for ImAE is the same as the Egirical value given in Eq. (108).
Consistency between the empirical A§ and the theoretical caiculzation
would thus indicate that the collision-broadening terms douinate over
the resonance~narrowing (Pauli) term in Eq. (138).

The main result of this 1§cture, given in Eqs. (133) and (106),
is the parameterization of u(2 , appropriate for resonance-energy
scattering. We found that this form is justified as a %ow-density
approximation in the static Chew-Wick field theory with A 2 nearly
independent of N-Z, weakly depenient on A and R, and strongly
dependent on energy. We were able to draw tentative conclusions about
the theory based on a partial evaluation of the parameters
contributing to U(z). Considerations of enhancing the convergence of
the expansion of U lead to the notion of self-consistency. We showed
that the qualitative behavior of the isoscalar optical potential 1is
determined by the self-consistent determination of the pion-nucleon
scattering amplitude in the medium. We concluded that the large enm-
pirical wvalue for the isovector optical potential found in Lecture II
could arise from the Pauli correlations calculated in terms of the
self-consistent plon-nucleon scatter%ng amplitude. To implement a
fully self-consistent calculation of U 2 following the ideas present-
ed in Refs. 38 and 61 would require a somewhat generalized definition
of a second-order correction to U. One would hope ¢t at the result

PN SR T T ' 1 T ]
20 |~ if § } } }.j

; o Rew, /
;o -20 :- / .:4
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Fig. 25. Comparison of the theoretical spreading potential of Ref. 6l
to the phenomenological result of Ref. 4(a). The legend is the rame
as Fig. 10,



would not diffig)drastically in form from Eqs. (133) and (106); e.g.,
i

that allowing X to hase a (weak) dependence on p(R) would be suffi-
cient.

ghe isotensor potential is the most poorly understood component
of u(2), We found evidence for the necessity of including intermedi-
ate nonanalog states in sequential scattering by considering the rela-
tive forward cross section of double-charge exchange from 48¢ca “con-
pared to that for T = ] nuclei. 1In trying to understand the absolute
magnitude of the DCX cross section, we showed that the 4., interacting
with the nucleus would give a large enhancement to double-charge
exchange but that this would not describe the data for energies above
140 MeV. If one adopts the strong p coupling to the A,, and a high
m?ig pAA form-factor cutoff, what appears to be needed is a term in
U which behaves like a broad resonance with a mass 100-200 MeV
above that of the 035 Tresonance.

How close have we come to solving the basic problems as put
forth 1in the {introduction to these lectures? It is certainly too
early to claim to have a completely satisfactory solution. However, I
am encouraged by successes we have had in the phenomenological appli-
cation of the ideas and by hirts that the dominant physics of the iso-
scalar and isovector second-order terms has been identified. We hope
to have a more complete determination of the second-order optical
potential in the future. Because of the large ?nﬁrgy shifts found in
the empirical studies, one would like to embed U 2 in a calculation
for which the lowest order potential is obtained from first
principles. Progress in this direction 1s being made (?33 Ref. 42).
Some consideration for the extension of the theory of U beyond the
static approximation would also be desirable. Once a reasonably well-
justified dynamical model of U is obtained, we will be much closer to
the long-sought goal of being able to study nuclear structure quanti-
tatively with pions.
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